UNIVERSITY OF ARKANSAS AT LITTLE ROCK

INFORMATION SCIENCE, PRINCIPLES AND THEORY.

INFORMATION SCIENCE

Mallet vs GenSim: Topic modeling for
20 news groups report.

Authors:
Islam. AKEF
Juan S. MUNOZ ARANGO

Aduvisor:
Dr. Xiaowei XU

April 23, 2016

1 Introduction

On this resport we are going to work with Mallet[I] and GenSim[2] and compare them to see
how good or bad both work on the topic modelling task. We also want to see how data should
be prepared for each tool and see how easy is to get each app up and running.

For both reports we are going to use as an input data the 20 newsgroups data set[3]; This
data set contains data from different topics like hardware, computers, motorcycles, politics, elec-
tronics, religion among others. The idea of this project is to train a topic model with all the
datasets together, experiment with stop words, number of topics and then analyze the extracted
topics and display the top 20 words that have the highest probabilities for each topic.

Latent Dirichlet Allocation (LDA) is a topic model that generates topics based on word
frequency from a set of documents. LDA is particularly useful for finding reasonably accurate

mixtures of topics within a given document set.

We will use Latent Dirichlet Allocation to perform topic modeling and discover semantic
structure of the provided dataset, by examining word statistical co-occurrence patterns within
the provided dataset titled 20 Newsgroups which consists of 20000 messages taken from 20 news-
groups. The messages are provided by the School of Computing at Carnegie Mellon University
which dates back to 1999. The 20000 messages represent 1000 use net articles with approxi-
mately 4% of the articles cross posted, they are typical postings thus they have headers with
subject lines, signature files and quoted portions of other articles, also each newsgroup is stored

in a subdirectory, with each article stored as a separate file.

This dataset comes organized by date, and also comes with some noise (like the “From”,
“Subject” headers on each post as mentioned before and some typos in the dataset aswell); some
of the topics are very closely related to each other like Hardware MAC and Hardware PC, while

other topics are very dissimilar like christian topics and motorcycles.

The unsupervised approach provided with LDA allow expressing the documents in the new
semantic representation and queried for topical similarity against other documents, this approach
is based mainly on creating a term document matrix through performing singular value decom-

position, and identifying the occurrences of a certain terms and assigning weights.

Some of the advantages of LDA can be summarized by the following: simple model based
on linear algebra, term weights not binary, allows computing a continuous degree of similarity
between queries and documents, allows ranking documents according to their possible relevance,

Allows partial matching.

The limitations of LDA includes: long documents are poorly represented because they have

poor similarity values, search keywords must precisely match document terms; word substrings
might result in a ”false positive match”, semantic sensitivity; documents with similar context but
different term vocabulary won’t be associated, resulting in a ”false negative match”, the order in
which the terms appear in the document is lost in the vector space representation, theoretically

assumes terms are statistically independent and last weighting is intuitive but not very formal.

After getting the results we plan to compare both Mallet and GenSim against each other and
see how different or similar both topics end up being trained.

2 Approaches and Methodologies

On this section we are going to discuss how we installed Mallet and GenSim applications and
what procedures we did in order to get to our conslusions, we also are going to mention issues
we found and how we solved them.

2.1 Mallet: Machine Learning for Language Toolkit

Mallet is a a Java-based console applicaction for language processing, document classification,
clustering, topic modeling, etc. It uses Latent Dirichlet Allocation, Pachinko Allocation and

Hierarchical Latent Dirichlet Allocation for topic modelling.

In order to setup Mallet, one has to download and install the Java SDK and later on download
the binaries for Mallet. On this report we are using mallet-2.0.8RCS version and we followed the
guidelines proposed by Shawn Graham, Scott Weingart and Ian Milligan [4]. These guidelines

are quite straight forward and helped us out make Mallet work in around an hour.

Still one has to be carefull to call any Mallet binary from exactly “mallet/”, because if you
execute the binary from inside “mallet/bin/” it will look like it works but when you run the data

it complains with java exceptions. In other words:

Example on how to NOT run the app as it will throw exceptions

Console$:./mallet train-topics --input Test20Newsgroups.mallet

Error: Could not find or load main class cc.mallet.topics.tui.TopicTrainer
Example on how to properly run mallet

Console$:./bin/mallet train-topics --input Test20Newsgroups.mallet

2.1.1 Mallet workflow

In order to make Mallet work for topic modelling, there are two steps that need to be followed;

the topic importing from the raw data set and the topic training.

A)Topic importing: This is the most important step, in this part we tell mallet what is the
data that is going to be used. In this step we pre-process the data and clean it of noise as

“.mallet”

this is the data that is going to be used for training purposes. After this step a
binary gets generated with the raw data extracted, processed and free of noise for the next

step.

B)Topic training: On this part we use the pre-processed output on the topic importing step
as an input and we train our topics based on the data we got on the first step. Hence,
if the importing process on step 1 still has noise, it will negatively affect the results for
the trained data. On this step we can tweak how the training process is done. We can
tell mallet the number of topics we want to have, the number of iterations we want to
achieve while training the data, set parameters like the beta value for smoothing doc-topic

distributions among other values.

Finally after following this seemengly simple 2 steps we get the results in 3 files. The first one
contains the topic key words, the second one contains a matrix that contains the most prominent
documents for each topic and the third one contains a Gibbs sampling state after each of the
iterations. This sampling tells us the words, which topic each word belongs to, the source of each

word and the alpha and beta values for the trained model.

2.2 GenSim: Topic modeling for humans

Gensim is a python package based on numpy and scipy packages. Genism features are: memory
independence where there is no need for the whole training corpus to be on the RAM at any
given time, Gensim introduces Simplistic implementations for tf-idf and Latent Semantic Anal-
ysis and Latent Dirichlet Allocation, also provides the ability to write simple similarity queries
for documents in their semantic representation, Gensim is based mainly on the concepts of a

corpus, vector, models and sparse matrices.

Going through the definitions of these concepts: a corpus is a whole dataset provided in a
compressed or non-compressed single file path, a vector is a set of defining attributes for the
corpus represented in word by word vector value, a model is the algorithm used to extract and

find pattern in the document matrix represented by the sparse matrices.

2.2.1 GenSim workflow

The ways to process documents are so varied and application- and language-dependent, a doc-
ument is represented by the features extracted from it, not by its string form, using the bag of
words technique. In this representation, each document is represented by one vector where each

vector element represents a question-answer pair.

There exist several file formats for serializing a Vector Space to disk. Gensim implements
them via its streaming corpus interface: Documents are read from disk in a lazy fashion, one
document at a time, without the whole corpus being read into main memory at once. Gensim
transform documents from one vector representation into another. This process serves two goals:
To bring out hidden structure in the corpus, discover relationships between words and use them
to describe the documents in a new and more semantic way, also to make the document repre-

sentation more compact and this will lead to improving efficiency and efficacy.

Transformations always convert between two specific vector spaces. The same vector space
must be used for training as well as for subsequent vector transformations. Failure to use the
same input feature space, such as applying a different string preprocessing, using different feature
ids, or using bag-of-words input vectors where tf-idf vectors are expected, will result in feature

mismatch during transformation calls.

3 Experiments and Evaluation

3.1 Mallet:

In order to import the data we can tell Mallet what part of the data can be excluded either by
a stop-word list, a created stop word list or a regular expression that gets run against the data

before processing it.

The initial command we attemted to run was:

$Console$:./bin/mallet import-dir --input ../20_newsgroups/

--output Test20Newsgroups.mallet --remove-stopwords --keep-sequence

Where we just tell it to import the whole Directory of the data set (20_newsgroups) and remove
the stop words found in the english language. Afterwards, we just run the training command to
get the keys (Figure: [1).

naruse@macbookpro-144-167-151-106 ~/dev/UALR/InformationSciencePrinciplesAndTheory/mallet-2.0.8RC3 $:cat TestKeys.txt
0.03548 god jesus soc.religion.christian bible christian church approved christian@aramis.rutgers.edu christians christ athos.rutgers.edu faith sin sender christianity lord go
's geneva.rutgers.edu subject life
0.0426 file image software files data comp.graphics ftp information graphics program images version format jpeg system send list bit gif mail
0.02546 apr rec.motorcycles bike dod writes article path date subject lines gmt references message-id organization newsgroups nntp-posting-host ride sender riding bmw
0.24486 people don't it's time make i'm good apr article point things writes that's back thing can't problem question find doesn't
0.02113 sci.med medical disease health cancer patients drugs drug doctor medicine treatment aids pain research water study vitamin day body hiv
0.02236 israel armenian turkish talk.politics.mideast armenians jews israeli people war armenia jewish world arab genocide government turks muslim muslims turkey serdar
0.04315 president government states national american public united state u.s political law rights stephanopoulos tax health information talk.politics.misc free year congress
0.06265 drive card dos windows scsi system disk mac comp.sys.mac.hardware comp.sys.ibm.pc.hardware problem bit monitor hard memory video apple mhz work drives
0.04207 car rec.autos apr cars engine power subject writes newsgroups article oil path speed good battery lines date gmt drive price
0.02204 key encryption sci.crypt clipper chip government keys apr security privacy system public algorithm des law nsa information escrow phone crypto
0.02833 window windows comp.windows.x file server program subject motif application problem set sun widget manager display comp.os.ms-windows.misc running run font version
0.03623 apr gun talk.politics.guns writes fbi article fire people government guns koresh references lines date newsgroups path organization subject batf gmt
0.0373 game team apr year rec.sport.hockey games rec.sport.baseball hockey players play season baseball win league player nhl lines teams subject good
0.02724 alt.atheism writes apr article morality objective references god subject lines message-id newsgroups date path moral organization gmt frank don't talk.religion.misc
0.02045 apr writes science xref article references cantaloupe.srv.cs.cmu.edu theory subject msg lines message-id organization date path newsgroups gordon sci.med banks gmt
0.0055 entry output ground sci.electronics file circuit wire wiring mov build current oname rules program input entries int char contest section
0.02713 space sci.space nasa launch earth shuttle orbit moon mission system solar sci.astro satellite spacecraft pat sky data lunar flight henry
0.45932 apr date lines organization newsgroups path message-id subject gmt references sender writes university nntp-posting-host article news cantaloupe.srv.cs.cmu.edu xref ca
ntaloupe. srv.cs. cnu.edu!crabapple.srv.cs. cmu.edu! fs distribution
18 0.04032 sale misc.forsale newsgroups date message-id path subject lines organization apr gmt abortion price offer xref shipping cantaloupe.srv.cs.cmu.edu distribution conditio
n pay
19 0.00057 max g)r F)b ro giz bxn gax F)r r)b uww okz @b v-c t-(n a,b w-s a;)r m¥a u/m e"v
naruse@macbookpro-144-167-151-106 ~/dev/UALR/InformationSciencePrinciplesAndTheory/mallet-2.0.8RC3 §:

Figure 1: Initial topic keys. LogLikelihood: -9.45506

As noted in Figure [I| none of the topics make sense, there are even words that dont make

sense at all, like “apr” (Topic 17) or garbage words like the ones found in topic 19.

After finding these issues we decided that we needed an extra hand made stop-words list for

<

this specific data set. Enter the “—extra-stopwords” command!.
We iterated on this extra stop words file several times until we got something that showed

words that made sense. We ended up with these stop words:

apr max g)r f)b r\o giz bxn qax f)r r)b uww okz g)b v-c t-(n q,b
w-s a;)r mja u/m e"v xref batf message-id newsgroups rutgers i’m
it’s i’ve don’t can’t doesn’t x-newsreader mailing list
nntp-posting-host reply-to gmt that’s t)s glkha f£"z qtm t]lf v7?iq
p\w u’%w tglhq lg)r

We ran again the training model with the extra stop words added and we got some better

results.

] 0.01837 writes article subject organization date lines path references talk.politics.misc cantaloupe.srv.cs.cmu.edu government people rights political gay law state m]
sender optilink.com
1 0.22081 people time good make point back things problem thing didn't find question made case long lot fact you're read give
2 0.00882 armenian turkish armenians armenia people turks genocide serdar turkey argic abortion world muslim soc.culture.turkish muslims cantaloupe.srv.cs.cmu.edu gover|
ent greek article lines
0.03358 car subject lines organization date path rec.autos writes article references cars sender engine university distribution oil usa good speed ford
0.04031 president national states american u.s government united information april public year health program stephanopoulos state private general house press congres|
0.00102 georgia covington programs ai.uga.edu athens air tmi mcovingt@ai.uga.edu u.s.a cliff amateur mcovingt@aisun pom artificial intelligence g#&'ax associate part

)q tbxom
3

0.03529 space lines subject date path organization sci.space references writes article nasa system sci.electronics sender launch earth power shuttle orbit cantaloupe.
date lines path subject organization drive windows dos card scsi system references writes sender disk article university comp.sys.ibm.pc.hardware mac comp.sys|

sci.med date path lines organization subject references article medical writes disease sender patients msg cancer university gordon health food medicine
0.0352 game subject organization date lines path team writes references article year rec.sport.hockey games university rec.sport.baseball sender hockey players play

0.09423 subject date lines organization path university sender sale distribution news misc.forsale cantaloupe.srv.cs.cmu.edu usa cantaloupe.srv.cs.cmu.edu!crabapple.s|
.cs.cmu.edu! fs references computer e-mail email state usenet
11 0.02887 writes article alt.atheism references subject date lines path organization morality science objective god moral talk.religion.misc cantaloupe.srv.cs.cmu.edu f]
nk sender christian university

0.02723 file subject window lines path date comp.windows.x organization windows program files image jpeg server display version sender bit motif set

0.02991 date subject path organization lines writes rec.motorcycles references article bike dod sender news ride university andrew.cmu.edu distribution bmw riding dog

0.01578 israel writes israeli jews subject date article lines organization talk.politics.mideast path references jewish arab university war arabs peace sender state

0.00084 entry file oname output int entries char rules contest program section build stream buf van eof_not_ok info fprintf(stderr obfuscated remark

0.03116 god jesus subject soc.religion.christian path date bible lines sender christian church organization approved christian@aramis.rutgers.edu christians christ at]
s.rutgers.edu writes faith people

0.02986 software image data ftp graphics information comp.graphics system send subject file mail version program files computer anonymous lines email systems

0.03189 writes gun article lines subject date organization path references talk.politics.guns fbi fire guns people koresh cantaloupe.srv.cs.cmu.edu government univers|
y sender news
19 0.02108 key encryption sci.crypt clipper chip subject date path lines organization references writes government keys article security system privacy cantaloupe.srv.cs|
mu.edu des

Figure 2: Initial topic keys with hand made stop word list. LogLikelihood: -9.20506

Figure[2| Looks better, but still we have some words that doesnt tell us anything, i.e “sci.crypt”.
So for this case, we noticed that all these words could be took away with a simple regular ex-
pression, so we did that and created a small regular expression that filters all the words that

have points in between.
RegExp: (?!"[~.]1+$).+

The results, much much better. Now we have single words that have a meaning and topics

make sense. Figure

o 0.02646 israel turkish armenian jews israeli armenians war people jewish world armenia government arab genocide turks muslim serdar mus|
lims turkey argic
.02634 health medical disease cancer patients msg insurance food gordon medicine treatment banks doctor aids coverage abortion diet ye
pain
.06654 sale power subject path lines date price organization good battery ground shipping radio sound condition circuit cable offer sy

.05533 windows dos file image program version software jpeg bit system gif driver images format graphics color run drivers programs di|

.00037 air cliff den lines subject mas ugs usa organization date dakota south distribution path bhjn[m wmbxlt giyu q,#p d)"g a-v
.06121 drive scsi card mac system disk apple mhz hard drives path bit problem bus video ide lines controller monitor modem
.05979 car writes article bike path date subject dod references lines organization cars engine good speed bmw ride sender miles front
.03507 information file send program entry internet email address san conference national political states convention anonymous contac
mail service institute number
0.0448 god jesus bible christian church christians approved christ faith sin christianity man lord god's love path sender life paul pe

0.0284 key encryption clipper chip government keys security system privacy algorithm public des law data nsa information escrow phone
pgp secure
10 0.03878 window server data code program graphics version sun file image software motif set display ftp application system subject widge|
package
0.06786 president people time back told stephanopoulos day house years home myers clinton work left white children made started asked j

0.05047 gun government people law writes article guns state rights control crime laws public path references police constitution amendm|
ent federal bill

0.27685 people time make good point writes article things question subject find read problem fact thing case made reason give real

0.0358 space nasa earth launch shuttle orbit moon mission system solar data satellite energy spacecraft sky program pat nuclear henry

0.03743 fbi fire writes koresh article people waco government references path lines subject date organization compound children atf mor
mons gas jews
16 0.51952 lines date subject organization path references sender writes university article news distribution usenet computer usa fri worl]
d system wed mon

0.04774 game team year games hockey players play season baseball win league path player good nhl organization subject lines date teams

0.03379 writes morality article god objective science moral references path date subject lines frank organization religion theory athei
sts christian evidence truth

0.02728 sandvik islam kent islamic germany rushdie sweden monu gregg georgia covington qur'an ksand alink finland khan muslim athens ri

Figure 3: Topic keys, hand made stop words list and Regex. LogLikelihood: -9.10242

After this we started to play with the simulation values. we changed the Beta and the Alpha
values and started to tweak the number of topics. After all of this we played also with the number
of iterations and we noticed that the value that made most change in the log likelihood was the
number of topics. We managed to reduce the log likelihood to -8.77896 with 500 topics.

Some examples of the results with Mallet include:

Topic 195: printer print font fonts postscript printing laser
printers deskjet color windows dpi ink driver canon truetype

lines paper characters memory

Topic 322: image jpeg images gif bit file color format display
colors quality version formats programs convert free software

viewer conversion tiff

Topic 412: political rights party states human parties state
vote minority public candidates equal law freedom present

democratic covenant law respect civil

3.2 GenSim:

As mentioned before; data in GenSim gets feeded in a lazy way, meaning one file at the time;
this is for avoiding the need to hardware with high RAM. In GenSim we divided the process in
3 parts: Data cleaning, constructing the document matriz and finally applying the LDA model to

the data.

3.2.1 Data cleaning

Data cleaning is crucial for generating a useful topic model the following steps are common to

most natural language and text processing methods: Tokenizing, Stopping and Stemming.

Tokenization segments a document into its atomic elements. In this case, we are interested
in tokenizing to words. Certain parts of English speech, like conjunctions (for, or) or the word
the are meaningless to a topic model. These terms are called stop words and need to be removed

from our token list.

Stemming words reduces those terms to stem. This is important for topic modeling, which

would otherwise view those terms as separate entities and reduce their importance in the model.

For stemming the data set we create an object that has the processed corpus (Figure: [4)).

class Corpus20News (cbject):
daf init (self, fname):
self.fname = fname
logging.info("collecting ngrams from %s" % self.fname)
documents = (self.split words (text) for text in iter 20newsgroups(self.fname,
log_every=1000)
words = itertools.chain.from iterable (documents)
self.bigrams, self.trigrams = best ngrams (words)

def split words (self, text, stopwords=STOPWORDS):
return [PorterStemmer () .stem(word)
for word in gensim.utils.tokenize (text, lower=True)
if word not in STOPWORDS and len (word) > 3]

def tckenize (self, message):

text = u' '.join(self.split words(message))

text = re.sub(self.trigrams, lambda match: match.group(0).replace(u' ', u'_"},
text)

text = re.sub(self.bigrams, lambda match: match.group(0).replace(u' ', u'_'},
text)

return text.split(

def iter (self):
for message in iter 20newsgroups (self.fname):
yield self.tokenize (message)

collocations_corpus = Corpus2(News (my corpus)
Figure 4: Code snippet that creates an object of the whole corpus.

In this process we follow these steps:

1) Remove header and footer from the dataset and return the trimmed string of the file content
2) Split the text into tokens and apply stemming

3) Remove stop words from the text

3.2.2 Constructing the document term matrix.

The result of our cleaning stage is that texts are tokenized, stop words free and stemmed list of
words from a whole corpus. But before applying the models we need to save our corpus on disk

as a binary file to be processed later and apply the model on.

We do this in Figure ?7 by saving the processed corpus to disk in GenSim in two files:
Document matriz and a Dictionary. To generate an LDA model, we need to understand how
frequently each term occurs within each document.

collocations corpus = CorpusZ0News (my corpus)

dictionary = corpora.Dictionary (collocations_corpus)
dictionary.save('D:/sources/PycharmProjects/TopicModelling/tmp/newsgroups.dict')

corpus = [dictionary.doc2bow(text) for text in collocations corpus]

corpora.MmCorpus.serialize('D: /sources/PycharmProjects/TopicModelling/tmp/newsgroups.m
m', corpus)

Figure 5: Code snippet that generateds a document term matrix from the processed corpus

3.2.3 Applying the LDA model

Finally, we load the saved dictionary and document matrix. We then apply the LDA model on
the processed corpus and run the script shown in Figure [f]
dictionary =

corpora.Dictionary.leoad('D: fsources/PycharmProjects/TopicModelling/tmp/newsgroups.dict

i)

corpus =

corpora.MmCorpus ('D: /sources/PycharmProjects/TopicModelling/tmp/newsgroups..mm')
ldamodel = models.lLdaModel (corpus, id2word=dictionary, num_topics=200)
corpus_lda = ldamodel [corpus]

ldamodel .print_topics(num_topics=200, num_ words=20)
Figure 6: Code snippet that applies the LDA model and prints results

Our LDA model is now stored as ldamodel. We will run the training model on 500 topics
then we can review our topics with the print_topic and print_topics methods, the output below
shows 3 topics in within each topic are the 20 most probable words to appear in that topic. Even

though our document set is small the model is reasonable.

Topic 161: 0.153*government + O.11ll*xpresident + 0.030*xfood +
0.022*protection + 0.022*xwestern + 0.020*governments +
.020*british + 0.019*countries + 0.0l14xhealth_care +
.014xleaders + 0.014xdemocratic + 0.012*xpopulation +
.0ll1*xdemocracy + 0.0l1l*policies + 0.01ll*people + 0.010*today +

.010*social + 0.008*steve + 0.008xworkers + 0.007*involve

o O O O

Topic 253: 0.149*%arab + 0.063*moon + 0.046*paragraph + 0.032*xsins +

0.028*stars + 0.027xappear + 0.017xoperation + 0.015*length +
.013*veal + 0.012*%origin + 0.012*entity + 0.012*purpose +
.0l1*saving + 0.007*beasts + 0.007*slavery + 0.007*standpoint +
.007*mathematical + 0.007*symbolic + 0.006*congregation +
.006*observed

o O O O

Topic 6: 0.0b54*russian + 0.047*jesus + 0.041xheaven + 0.032*xhockey +
0.031*peter + 0.026xvillage + 0.020%lord + 0.019*said + 0.019*unto +

0.015*rose + 0.015*spoke + 0.014*judas + 0.013*disciples +
0.012*%john + 0.011xbattle + 0.010*matthew + 0.009*came +
0.008*saints + 0.008*puck + 0.007*crew

4 Conclusions

LDA assumes documents are produced from a mixture of topics. Those topics then generate
words based on their probability distribution. Gensim is a python library with good tools to
work flexibly on topic modeling, however genism does not provide an out of the box running

commands to perform topic modeling, it requires python knowledge.

Mallet is an out of the box tool but unfortunately it doesnt let you tweak or see in between
steps like GenSim does. Mallet regardless being a console application is much more user friendly
than GenSim, but for advanced work is better to use GenSim as it lets you tweak more param-
eters than Mallet

Data cleanness is critical, it is extremely important to check the data that we are going to
work with before training it, this is because as we exposed, the very beggining attemps throwed

random words.

Mallet and GenSim results are a little bit dissimilar but we think this is because of the data
we used, even though it came from exactly the same place we dont know which stop words Mallet

uses vs GenSim and we dont know how the cleanning process gets treated inside each of the tools.

The words that we got out of each tool some of the words had correlation but some other
topics didnt. We think this could be enhanced by tweaking more internal parameters in each of
the tools.

References

McCallum, Andrew Kachites. 2002. Mallet: MAchine Learning for Language Toolkit. [ON-
LINE] Available at: [attp://mallet.cs.umass.edu/| [Accessed 20 April 2016].

Radim Rehurek. 2009. GenSim. Topic Modelling for humans. [ONLINE] Available at:
|https://radimrehurek.com/gensim/| [Accessed 20 April 2016].

jrennie. 2008. 20 Newsgroups data set. [ONLINE] Available at: |http://qwone.com/ ja-|
[son/20Newsgroups/| [Accessed 20 April 2016].

Shawn Graham, Scott Weingart and Tan Milligan. 2012. Getting Started with topic modelling
and MALLET. [ONLINE] Available at: |http://programminghistorian.org/lessons/topic-|
[modeling-and-mallet] [Accessed 20 April 2016]

Matthew L Jockers. Text Analysis with R for students of Literature Springer, June 10 2014,
145-147

Vector space model, Wikipedia. [Online]. Available at:
|https://en.wikipedia.org/wiki/vector_space_model| [Accessed: 16 April 2016].

Latent Dirichlet Allocation (LDA) with Python, Latent Dirichlet Allo-
cation (LDA) with Python. [Online]. Available at: [https://rstudio-pubs-|
|static.s3.amazonaws.com/79360_850b2a69980c4488b1db95987a24867a.htmll [Accessed:
22 April 2016].

Topic Modeling for Fun and Profit, Notebook. [Online]. Available at:
[http://radimrehurek.com /topic_modeling_tutorial /2%20-%20topic%20modeling.html|
[Accessed: 22 April 2016].

10

	Introduction
	Approaches and Methodologies
	Mallet: Machine Learning for Language Toolkit
	Mallet workflow

	GenSim: Topic modeling for humans
	GenSim workflow

	Experiments and Evaluation
	Mallet:
	GenSim:
	Data cleaning
	Constructing the document term matrix.
	Applying the LDA model

	Conclusions

