
University of Arkansas at Little Rock

Information Science, Principles and Theory.

Information Science

Mallet vs GenSim: Topic modeling for
20 news groups report.

Authors:

Islam. Akef

Juan S. Muñoz Arango

Advisor:

Dr. Xiaowei Xu

April 23, 2016

1 Introduction

On this resport we are going to work with Mallet [1] and GenSim[2] and compare them to see

how good or bad both work on the topic modelling task. We also want to see how data should

be prepared for each tool and see how easy is to get each app up and running.

For both reports we are going to use as an input data the 20 newsgroups data set[3]; This

data set contains data from different topics like hardware, computers, motorcycles, politics, elec-

tronics, religion among others. The idea of this project is to train a topic model with all the

datasets together, experiment with stop words, number of topics and then analyze the extracted

topics and display the top 20 words that have the highest probabilities for each topic.

Latent Dirichlet Allocation (LDA) is a topic model that generates topics based on word

frequency from a set of documents. LDA is particularly useful for finding reasonably accurate

mixtures of topics within a given document set.

We will use Latent Dirichlet Allocation to perform topic modeling and discover semantic

structure of the provided dataset, by examining word statistical co-occurrence patterns within

the provided dataset titled 20 Newsgroups which consists of 20000 messages taken from 20 news-

groups. The messages are provided by the School of Computing at Carnegie Mellon University

which dates back to 1999. The 20000 messages represent 1000 use net articles with approxi-

mately 4% of the articles cross posted, they are typical postings thus they have headers with

subject lines, signature files and quoted portions of other articles, also each newsgroup is stored

in a subdirectory, with each article stored as a separate file.

This dataset comes organized by date, and also comes with some noise (like the “From”,

“Subject” headers on each post as mentioned before and some typos in the dataset aswell); some

of the topics are very closely related to each other like Hardware MAC and Hardware PC, while

other topics are very dissimilar like christian topics and motorcycles.

The unsupervised approach provided with LDA allow expressing the documents in the new

semantic representation and queried for topical similarity against other documents, this approach

is based mainly on creating a term document matrix through performing singular value decom-

position, and identifying the occurrences of a certain terms and assigning weights.

Some of the advantages of LDA can be summarized by the following: simple model based

on linear algebra, term weights not binary, allows computing a continuous degree of similarity

between queries and documents, allows ranking documents according to their possible relevance,

Allows partial matching.

The limitations of LDA includes: long documents are poorly represented because they have

1

poor similarity values, search keywords must precisely match document terms; word substrings

might result in a ”false positive match”, semantic sensitivity; documents with similar context but

different term vocabulary won’t be associated, resulting in a ”false negative match”, the order in

which the terms appear in the document is lost in the vector space representation, theoretically

assumes terms are statistically independent and last weighting is intuitive but not very formal.

After getting the results we plan to compare both Mallet and GenSim against each other and

see how different or similar both topics end up being trained.

2 Approaches and Methodologies

On this section we are going to discuss how we installed Mallet and GenSim applications and

what procedures we did in order to get to our conslusions, we also are going to mention issues

we found and how we solved them.

2.1 Mallet: Machine Learning for Language Toolkit

Mallet is a a Java-based console applicaction for language processing, document classification,

clustering, topic modeling, etc. It uses Latent Dirichlet Allocation, Pachinko Allocation and

Hierarchical Latent Dirichlet Allocation for topic modelling.

In order to setup Mallet, one has to download and install the Java SDK and later on download

the binaries for Mallet. On this report we are using mallet-2.0.8RC3 version and we followed the

guidelines proposed by Shawn Graham, Scott Weingart and Ian Milligan [4]. These guidelines

are quite straight forward and helped us out make Mallet work in around an hour.

Still one has to be carefull to call any Mallet binary from exactly “mallet/”, because if you

execute the binary from inside “mallet/bin/” it will look like it works but when you run the data

it complains with java exceptions. In other words:

Example on how to NOT run the app as it will throw exceptions

Console$:./ mallet train -topics --input Test20Newsgroups.mallet

Error: Could not find or load main class cc.mallet.topics.tui.TopicTrainer

Example on how to properly run mallet

Console$:./bin/mallet train -topics --input Test20Newsgroups.mallet

2.1.1 Mallet workflow

In order to make Mallet work for topic modelling, there are two steps that need to be followed;

the topic importing from the raw data set and the topic training.

2

A)Topic importing: This is the most important step, in this part we tell mallet what is the

data that is going to be used. In this step we pre-process the data and clean it of noise as

this is the data that is going to be used for training purposes. After this step a “.mallet”

binary gets generated with the raw data extracted, processed and free of noise for the next

step.

B)Topic training: On this part we use the pre-processed output on the topic importing step

as an input and we train our topics based on the data we got on the first step. Hence,

if the importing process on step 1 still has noise, it will negatively affect the results for

the trained data. On this step we can tweak how the training process is done. We can

tell mallet the number of topics we want to have, the number of iterations we want to

achieve while training the data, set parameters like the beta value for smoothing doc-topic

distributions among other values.

Finally after following this seemengly simple 2 steps we get the results in 3 files. The first one

contains the topic key words, the second one contains a matrix that contains the most prominent

documents for each topic and the third one contains a Gibbs sampling state after each of the

iterations. This sampling tells us the words, which topic each word belongs to, the source of each

word and the alpha and beta values for the trained model.

2.2 GenSim: Topic modeling for humans

Gensim is a python package based on numpy and scipy packages. Genism features are: memory

independence where there is no need for the whole training corpus to be on the RAM at any

given time, Gensim introduces Simplistic implementations for tf-idf and Latent Semantic Anal-

ysis and Latent Dirichlet Allocation, also provides the ability to write simple similarity queries

for documents in their semantic representation, Gensim is based mainly on the concepts of a

corpus, vector, models and sparse matrices.

Going through the definitions of these concepts: a corpus is a whole dataset provided in a

compressed or non-compressed single file path, a vector is a set of defining attributes for the

corpus represented in word by word vector value, a model is the algorithm used to extract and

find pattern in the document matrix represented by the sparse matrices.

2.2.1 GenSim workflow

The ways to process documents are so varied and application- and language-dependent, a doc-

ument is represented by the features extracted from it, not by its string form, using the bag of

words technique. In this representation, each document is represented by one vector where each

vector element represents a question-answer pair.

3

There exist several file formats for serializing a Vector Space to disk. Gensim implements

them via its streaming corpus interface: Documents are read from disk in a lazy fashion, one

document at a time, without the whole corpus being read into main memory at once. Gensim

transform documents from one vector representation into another. This process serves two goals:

To bring out hidden structure in the corpus, discover relationships between words and use them

to describe the documents in a new and more semantic way, also to make the document repre-

sentation more compact and this will lead to improving efficiency and efficacy.

Transformations always convert between two specific vector spaces. The same vector space

must be used for training as well as for subsequent vector transformations. Failure to use the

same input feature space, such as applying a different string preprocessing, using different feature

ids, or using bag-of-words input vectors where tf-idf vectors are expected, will result in feature

mismatch during transformation calls.

3 Experiments and Evaluation

3.1 Mallet:

In order to import the data we can tell Mallet what part of the data can be excluded either by

a stop-word list, a created stop word list or a regular expression that gets run against the data

before processing it.

The initial command we attemted to run was:

$Console$:./bin/mallet import -dir --input ../20 _newsgroups/

--output Test20Newsgroups.mallet --remove -stopwords --keep -sequence

Where we just tell it to import the whole Directory of the data set (20 newsgroups) and remove

the stop words found in the english language. Afterwards, we just run the training command to

get the keys (Figure: 1).

Figure 1: Initial topic keys. LogLikelihood: -9.45506

4

As noted in Figure 1 none of the topics make sense, there are even words that dont make

sense at all, like “apr” (Topic 17) or garbage words like the ones found in topic 19.

After finding these issues we decided that we needed an extra hand made stop-words list for

this specific data set. Enter the “–extra-stopwords” command!.

We iterated on this extra stop words file several times until we got something that showed

words that made sense. We ended up with these stop words:

apr max g)r f)b r\o giz bxn qax f)r r)b uww okz g)b v-c t-(n q,b

w-s a;)r m%a u/m e"v xref batf message -id newsgroups rutgers i’m

it’s i’ve don ’t can ’t doesn ’t x-newsreader mailing list

nntp -posting -host reply -to gmt that ’s t)s g)%a f"z qtm t]f v?%q

p\w u%w tg%q lg)r

We ran again the training model with the extra stop words added and we got some better

results.

Figure 2: Initial topic keys with hand made stop word list. LogLikelihood: -9.20506

Figure 2 Looks better, but still we have some words that doesnt tell us anything, i.e “sci.crypt”.

So for this case, we noticed that all these words could be took away with a simple regular ex-

pression, so we did that and created a small regular expression that filters all the words that

have points in between.

RegExp: (?!^[^.]+$).+

The results, much much better. Now we have single words that have a meaning and topics

make sense. Figure 3.

5

Figure 3: Topic keys, hand made stop words list and Regex. LogLikelihood: -9.10242

After this we started to play with the simulation values. we changed the Beta and the Alpha

values and started to tweak the number of topics. After all of this we played also with the number

of iterations and we noticed that the value that made most change in the log likelihood was the

number of topics. We managed to reduce the log likelihood to -8.77896 with 500 topics.

Some examples of the results with Mallet include:

Topic 195: printer print font fonts postscript printing laser

printers deskjet color windows dpi ink driver canon truetype

lines paper characters memory

Topic 322: image jpeg images gif bit file color format display

colors quality version formats programs convert free software

viewer conversion tiff

Topic 412: political rights party states human parties state

vote minority public candidates equal law freedom present

democratic covenant law respect civil

3.2 GenSim:

As mentioned before; data in GenSim gets feeded in a lazy way, meaning one file at the time;

this is for avoiding the need to hardware with high RAM. In GenSim we divided the process in

3 parts: Data cleaning, constructing the document matrix and finally applying the LDA model to

6

the data.

3.2.1 Data cleaning

Data cleaning is crucial for generating a useful topic model the following steps are common to

most natural language and text processing methods: Tokenizing, Stopping and Stemming.

Tokenization segments a document into its atomic elements. In this case, we are interested

in tokenizing to words. Certain parts of English speech, like conjunctions (for, or) or the word

the are meaningless to a topic model. These terms are called stop words and need to be removed

from our token list.

Stemming words reduces those terms to stem. This is important for topic modeling, which

would otherwise view those terms as separate entities and reduce their importance in the model.

For stemming the data set we create an object that has the processed corpus (Figure: 4).

Figure 4: Code snippet that creates an object of the whole corpus.

In this process we follow these steps:

1) Remove header and footer from the dataset and return the trimmed string of the file content

2) Split the text into tokens and apply stemming

3) Remove stop words from the text

7

3.2.2 Constructing the document term matrix.

The result of our cleaning stage is that texts are tokenized, stop words free and stemmed list of

words from a whole corpus. But before applying the models we need to save our corpus on disk

as a binary file to be processed later and apply the model on.

We do this in Figure ?? by saving the processed corpus to disk in GenSim in two files:

Document matrix and a Dictionary. To generate an LDA model, we need to understand how

frequently each term occurs within each document.

Figure 5: Code snippet that generateds a document term matrix from the processed corpus

3.2.3 Applying the LDA model

Finally, we load the saved dictionary and document matrix. We then apply the LDA model on

the processed corpus and run the script shown in Figure 6.

Figure 6: Code snippet that applies the LDA model and prints results

Our LDA model is now stored as ldamodel. We will run the training model on 500 topics

then we can review our topics with the print topic and print topics methods, the output below

shows 3 topics in within each topic are the 20 most probable words to appear in that topic. Even

though our document set is small the model is reasonable.

Topic 161: 0.153* government + 0.111* president + 0.030* food +

0.022* protection + 0.022* western + 0.020* governments +

0.020* british + 0.019* countries + 0.014* health_care +

0.014* leaders + 0.014* democratic + 0.012* population +

0.011* democracy + 0.011* policies + 0.011* people + 0.010* today +

0.010* social + 0.008* steve + 0.008* workers + 0.007* involve

8

Topic 253: 0.149* arab + 0.063* moon + 0.046* paragraph + 0.032* sins +

0.028* stars + 0.027* appear + 0.017* operation + 0.015* length +

0.013* veal + 0.012* origin + 0.012* entity + 0.012* purpose +

0.011* saving + 0.007* beasts + 0.007* slavery + 0.007* standpoint +

0.007* mathematical + 0.007* symbolic + 0.006* congregation +

0.006* observed

Topic 6: 0.054* russian + 0.047* jesus + 0.041* heaven + 0.032* hockey +

0.031* peter + 0.026* village + 0.020* lord + 0.019* said + 0.019* unto +

0.015* rose + 0.015* spoke + 0.014* judas + 0.013* disciples +

0.012* john + 0.011* battle + 0.010* matthew + 0.009* came +

0.008* saints + 0.008* puck + 0.007* crew

4 Conclusions

LDA assumes documents are produced from a mixture of topics. Those topics then generate

words based on their probability distribution. Gensim is a python library with good tools to

work flexibly on topic modeling, however genism does not provide an out of the box running

commands to perform topic modeling, it requires python knowledge.

Mallet is an out of the box tool but unfortunately it doesnt let you tweak or see in between

steps like GenSim does. Mallet regardless being a console application is much more user friendly

than GenSim, but for advanced work is better to use GenSim as it lets you tweak more param-

eters than Mallet

Data cleanness is critical, it is extremely important to check the data that we are going to

work with before training it, this is because as we exposed, the very beggining attemps throwed

random words.

Mallet and GenSim results are a little bit dissimilar but we think this is because of the data

we used, even though it came from exactly the same place we dont know which stop words Mallet

uses vs GenSim and we dont know how the cleanning process gets treated inside each of the tools.

The words that we got out of each tool some of the words had correlation but some other

topics didnt. We think this could be enhanced by tweaking more internal parameters in each of

the tools.

9

References

[1] McCallum, Andrew Kachites. 2002. Mallet: MAchine Learning for Language Toolkit. [ON-

LINE] Available at: http://mallet.cs.umass.edu/. [Accessed 20 April 2016].

[2] Radim Rehurek. 2009. GenSim. Topic Modelling for humans. [ONLINE] Available at:

https://radimrehurek.com/gensim/. [Accessed 20 April 2016].

[3] jrennie. 2008. 20 Newsgroups data set. [ONLINE] Available at: http://qwone.com/ ja-

son/20Newsgroups/. [Accessed 20 April 2016].

[4] Shawn Graham, Scott Weingart and Ian Milligan. 2012. Getting Started with topic modelling

and MALLET. [ONLINE] Available at: http://programminghistorian.org/lessons/topic-

modeling-and-mallet. [Accessed 20 April 2016]

[5] Matthew L Jockers. Text Analysis with R for students of Literature Springer, June 10 2014,

145-147

[6] Vector space model, Wikipedia. [Online]. Available at:

https://en.wikipedia.org/wiki/vector space model. [Accessed: 16 April 2016].

[7] Latent Dirichlet Allocation (LDA) with Python, Latent Dirichlet Allo-

cation (LDA) with Python. [Online]. Available at: https://rstudio-pubs-

static.s3.amazonaws.com/79360 850b2a69980c4488b1db95987a24867a.html. [Accessed:

22 April 2016].

[8] Topic Modeling for Fun and Profit, Notebook. [Online]. Available at:

http://radimrehurek.com/topic modeling tutorial/2%20-%20topic%20modeling.html

[Accessed: 22 April 2016].

10

	Introduction
	Approaches and Methodologies
	Mallet: Machine Learning for Language Toolkit
	Mallet workflow

	GenSim: Topic modeling for humans
	GenSim workflow

	Experiments and Evaluation
	Mallet:
	GenSim:
	Data cleaning
	Constructing the document term matrix.
	Applying the LDA model

	Conclusions

